Time-Inconsistent Stochastic Linear-Quadratic Control

نویسندگان

  • Ying Hu
  • Hanqing Jin
  • Xun Yu Zhou
چکیده

Abstract. In this paper, we formulate a general time-inconsistent stochastic linear–quadratic (LQ) control problem. The time-inconsistency arises from the presence of a quadratic term of the expected state as well as a state-dependent term in the objective functional. We define an equilibrium, instead of optimal, solution within the class of open-loop controls, and derive a sufficient condition for equilibrium controls via a flow of forward–backward stochastic differential equations. When the state is one dimensional and the coefficients in the problem are all deterministic, we find an explicit equilibrium control. As an application, we then consider a mean-variance portfolio selection model in a complete financial market where the risk-free rate is a deterministic function of time but all the other market parameters are possibly stochastic processes. Applying the general sufficient condition, we obtain explicit equilibrium strategies when the risk premium is both deterministic and stochastic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Inconsistent Stochastic Control in Continuous Time: Theory

In this paper, which is a continuation of the discrete time paper [4], we develop a theory for continuous time stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We study these problems within a game theoretic framework, and we look for Nash subgame perfect equilibrium points. For a general controlled con...

متن کامل

Time-Inconsistent Discrete-Time Stochastic Linear-Quadratic Optimal Control: Time-consistent Solutions

In this paper, the time-consistent solutions of a timeinconsistent discrete-time stochastic linear-quadratic optimal control are investigated. Different from the existing literature, the definiteness constraint is not posed on the state and the control weight matrices of the cost functional. Necessary and sufficient conditions are, respectively, obtained to the existence of the open-loop time-c...

متن کامل

Time-Inconsistent Stochastic Linear-Quadratic Control: Characterization and Uniqueness of Equilibrium

In this paper, we continue our study on a general time-inconsistent stochastic linear–quadratic (LQ) control problem originally formulated in [6]. We derive a necessary and sufficient condition for equilibrium controls via a flow of forward– backward stochastic differential equations. When the state is one dimensional and the coefficients in the problem are all deterministic, we prove that the ...

متن کامل

A New Mathematical Approach based on Conic Quadratic Programming for the Stochastic Time-Cost Tradeoff Problem in Project Management

In this paper, we consider a stochastic Time-Cost Tradeoff Problem (TCTP) in PERT networks for project management, in which all activities are subjected to a linear cost function and assumed to be exponentially distributed. The aim of this problem is to maximize the project completion probability with a pre-known deadline to a predefined probability such that the required additional cost is min...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012